
www.no ve l l . c om

WH ITE PAPER

Microsoft Windows*:
An Inherently Insecure Platform

Table of Contents

2

3

3

8

8

EXECUT I VE SUMMARY

M ICROSOFT W INDOWS S ECUR I TY
TODAY

WHY W INDOWS I S AN I NHERENTLY
IN S ECURE OPERAT ING S Y STEM :
PROOF PO INT S

COMPAR ING W INDOWS S ECUR I TY
W ITH L I NUX S ECUR I TY

CONCLUS IONS

Microsoft Windows:
An Inherently Insecure Platform

1 http://www.themacobserver.
com/article/2000/08/16.9.shtml.

Microsoft Windows:
An Inherently
Insecure Platform

2

Executive Summary
Microsoft Windows* security, or the lack thereof, is synonymous with famous viruses and

worms, long delays in patching critical security vulnerabilities, and large costs to users for

installing patches and service packs (SPs) to resolve the aforementioned security flaws.

According to one leading analyst firm, security is important to Microsoft—but only to the

extent that security does not inhibit the adoption of Microsoft’s products.1

Recently, Microsoft has made a significant investment in improving the security of its

Windows platform. It has released thousands of security code fixes, and it has purchased

several small companies that each patch a specific security vulnerablity inside the Windows

platform; however, these fixes are a case of too little, too late. The security flaws in the

Microsoft Windows platform exist at a deeper level—in the fundamental architecture of

the platform.

Many of the security problems in Windows

operating systems can be traced back to the

code that was developed from 1992 –1996 for the

Windows NT* platform—in other words, code that

was developed before the Internet became

pervasive. Because every release of the Windows

platform leverages the code base of the previous

generation, there are many years of Windows code—

most likely, tens of millions of lines—that was

written before security in Windows became a

primary concern for Microsoft. The bad news for

today’s users is that much of this code is included

in Windows Server 2003 and will be included in

Longhorn, the next generation of the Microsoft

Windows platform.

In this White Paper, we present arguments,

based on fundamental operating system security

research, that show that Windows operating

systems are inherently insecure and will almost

certainly remain insecure. The basic problem is

that Windows operating systems were created

without security as a primary design objective,

and as a result, it is nearly impossible to make

Windows secure no matter how much money is

spent trying to do so. Attempting to make Windows

secure is similar to trying to plug a leak in a poorly

designed dam holding back water—plug one hole

and another develops.

The four primary reasons that Windows is

an inherently insecure operating system can be

summed as:

1. Windows was designed as a single-user

operating system.

2 Burton Group,Windows Server

2003 Security: Making Progress,

But Serious Concerns Remain,

February 24, 2004.

2. Windows was designed without security as

a primary goal.

3. Microsoft’s competitive strategy led it to

embed more functionality and application

integration into Windows in an attempt to

thwart the competition, resulting in a very

large and complex operating system with

many highly dependent pieces of code.

4. Microsoft’s basic lack of attention to security

after the initial Windows implementation.

MICROSOFT W INDOWS SECUR ITY TODAY

Every day, two conflicting scenarios play out again

and again:

• Systems administrators who work with both

Linux* and Windows say that Linux is more

secure and easier to maintain and patch

than Windows

• Microsoft executives tell customers how

much work Microsoft is doing to make Windows

secure and how much more secure Windows is

than Linux based on the meaningless metric—

the number of vulnerability bulletins released

each month or year

Microsoft tries to deflect Windows security

problems through marketing campaigns and

hiring marketing research companies to write

white papers indicating that Windows is more

secure than Linux. But the final decision maker

on security is you—the end user. So who do you

believe—other end users like yourself, or executives

from Microsoft who talk about how much money

Microsoft is spending on Windows security?

In a panel discussion at the LinuxWorld Expo

in Boston in February 2005, Steve Doherty of the

Cambridge Health Alliance (CHA) said that his

healthcare organization has about 200 servers.

Most of CHA’s servers run Windows operating

systems, but CHA runs some mission-critical

applications on Linux. When asked to compare

Linux and Windows security, Doherty said that

Windows is less secure and more difficult to

patch and maintain than Linux.

“We have fewer patches on Linux than on

Windows,” Doherty said. “It is a tremendous amount

of work to patch Windows. With most Windows

patches, we have to reboot the system, but with

most Linux patches we do not have to reboot. We

find that there are additional security costs with

Windows in addition to the costs of downtime for

patching—anti-virus costs and other add-on products.”

In a June 2004 report, Burton Group, a marketing

research firm, stated “Although Microsoft Windows

Server 2003 reduces some risks, it increases other

risks. This is due to its greater size and complexity,

the widespread use of insecure application

deployment models and other style of use issues,

and proven vulnerability to large-scale effects

from worms and viruses. These security concerns

have implications when considering how appropriate

Windows Server 2003 is in roles such as application

server or remote access server.”2

WHY W I NDOWS I S A N I NH ER ENT LY

I N S E CURE O P ERAT I NG S Y S T EM :

P ROOF PO I N T S

Microsoft’s philosophy about security is one of

ambivalence. Too many platform design decisions

Microsoft Windows:
An Inherently
Insecure Platform

3

were made without regard for security and the

impact of the Internet on security. Instead of

designing security into the kernel of the Windows

operating system, Microsoft places much of the

responsibility for security on the user. For example,

when it comes to account management, Microsoft

expects users to understand the importance of

renaming built-in accounts or creating a backup

administrator account, instead of building the

functionality directly into the shipping product.

Windows Server 2003 still provides large amounts

of functionality that is unnecessary, too complex or

too general-purpose for some operating system roles.

For example, the Windows Server 2003 operating

system exposes DCOM (Distributed Component Object

Module) functionality through the same remote

procedure call port that was used successfully by

the Blaster worm to attack other Windows operating

systems. A risk for Active Directory* replication exists

because it requires the use of DCOM. To mitigate

this problem, Windows Server 2003 disables IE

and Internet Information Services (IIS) by default

so that a domain administrator cannot infect the

controller with hostile ActiveX or other mobile

code while browsing the Internet. But there is no

guarantee that IE, IIS, and ActiveX—still resident

in the code base—won’t be toggled back on by a

careless administrator or by a malicious program.

Basic U.S. government-funded operating system

security research completed in the late 1970s

and early 1980s at places like the non-profit

Mitre Corporation concluded that:

• It is not possible to appreciably improve

security in an operating system (not designed

with security in mind) by just adding on

software packages such as Microsoft Service

Packs (SPs)

• The larger and more complex the operating

system, the more impossible the task of

making it secure

Below, we identify a number of weaknesses in

Windows security, some of which were derived from

Burton Group’s February 2004 paper on Windows

Server 2003 security3, that indicate why Windows

is an inherently insecure operating system.

The features of Windows operating systems

that prevent them from becoming as secure

as Linux include:

1. Windows was designed as a single-user

operating system. Originally, this design

allowed both users and applications almost

unlimited access to the entire system.

Linux was developed as a multi-user system;

therefore, it was designed from the ground up

to isolate users from applications, files and

directories that affect the security of the

entire operating system.

2. Windows’ monolithic design integrates

too many features (e.g., Internet Explorer)

into the core of the operating system.

This monolithic design creates many inter-

dependencies. For example, any flaw in IE

can expose the Windows operating systems

to risks well beyond what users should be

able to do with a browser.

3. Windows operating systems are large and

complex. Complexity is the single largest

3 Burton Group,Windows Server

2003 Security: Making Progress,

But Serious Concerns Remain,

February 24, 2004.

Microsoft Windows:
An Inherently
Insecure Platform

4

4 Karger, Paul A. and Schell,

Roger A. Thirty Years Later:

Lessons from the Multics

Security Evaluation,

(http://www.acsac.org/2002/
papers/classic-multics.pdf).

enemy of security.4 Windows operating systems

consist of between 40-million and 60-million

lines of code. Comparitively, the 2.6 Linux

kernel consists of 5.7 million lines of code).

Secure operating system design requires that

the kernel of an operating system be as small

and as simple as possible.

4. Windows relies heavily on the Remote

Procedure Call (RPC) Model. RPCs are security

risks because they are designed to allow other

computers attached to a network to tell your

computer what services it wants it to perform.

Windows operating systems depend on RPC,

even when they are not on a network,

because many Windows services depend

on RPC mechanisms.

5. Windows’ focus on developers. This focus

makes flexibility, integration and extensibility

more important goals than security. Focusing on

developers and not security is not necessarily a

bad thing. But it means that Windows operating

systems should not be used in high-risk situations

or for hosting mission-critical applications.

6. Basic lack of attention to security. Microsoft

has provided users with many features to make

Windows more attractive and more competitive,

but in many cases it has done so without regard

to the security implications.

We will now examine each of these six design

areas in more depth.

A Single User Operating System

Microsoft operating systems have their roots in

single-user designs, and Microsoft has gradually

tried to evolve them to provide multi-user server

operating systems. On the other hand, UNIX* and

Linux were designed to be multi-user systems from

the beginning. Because Windows was developed

as a single-user operating system that allowed

users and applications access to the entire system,

leftover single-user security holes exist in Windows

operating systems, including Windows Server 2003,

and some of these holes will undoubtedly be

in Longhorn.

Windows XP was the first Windows operating

system to make a serious effort to isolate users

from the system so that users each have their own

private files and limited system privileges. But this

caused some legacy Windows applications to fail

because they were accustomed to being able to

access and modify programs and files that only an

administrator should be able to access. This design

flaw is why Windows XP includes a compatibility

mode—a mode that allows programs to operate

as if they were running in the original insecure

single-user design. As Microsoft provides service

packs to make Windows act more like a multi-user

operating system, many applications break because

they are used to working without these restraints.

Windows Server 2003 has made some progress

toward true multi-user capabilities, but there

are still holdover security issues such as ActiveX.

Monolithic/Tight Integration

Windows is a monolithic, non-modular design

resulting in the integration of too many features

into the core of the operating system. In the early

Windows operating systems—Windows 95, 98 and

Microsoft Windows:
An Inherently
Insecure Platform

5

2000—Microsoft focused on ease of use and

integration as competitive features. Security was

not on the road map in any significant way.

Two of the best examples of tight integration

are IE and IIS.5 This type of integration was done

by Microsoft partly to prevent competitive software

(e.g., Netscape*) from being used on Windows and

serves as a good example of Microsoft’s design

philosophy: building Windows to prevent competition

at the expense of security. This philosophy was

good for creating market share, but it resulted in

making Windows extremely vulnerable to attackers

and inappropriate for high-risk applications.

Focusing on ease of use and tight integration

with Windows has not only resulted in serious

security flaws, but it has increased the cost of

patching Windows because of the interdependencies

caused by the tight integration. Tight integration

of applications results in longer times to create

fixes because regression testing must include the

entire operating system.

During a conversation with CNET News.com,

a Gartner analyst noted that Microsoft should

rebuild IE with security in mind from the bottom

up, rather than making “evolutionary” security

improvements to the browser software.6 It is unlikely

that Microsoft will re-architect IE, if ever, to detach

it from the Windows core code because it would

lower its competitive advantage over other browsers

such as Firefox*. IE is invoked/used by the Windows

help system, Outlook, and several other Microsoft

and third party applications. Thus, flaws in IE have

a greater impact than flaws in a stand-alone browser.

In a Linux client, the browser (and other clients)

are generally not part of the operating system—

they run in user space and not in kernel space.

Browsers are stand-alone applications hosted by the

operating system, making it more difficult to use

browsers on Linux as entry points for circumventing

operating system security. This design strategy

also means that the browser software can be

installed as a non-root (non-administrator user).

Unlike patches to IE, patches to a browser running

on Linux do not involve interdependency issues

with the Linux kernel.

Windows is Large and Overly Complex

Complexity is the enemy of security. The more

complex an operating system, the more points that

exist for a hacker to attack. The size and complexity

of the underlying operating system results in a

larger number of attackable vulnerabilities over a

period of time, and a higher number of hours spent

per month to keep secure or recover from mass

attacks. Windows is comprised of 40 to 60 million

lines of code that includes applications tightly

integrated with the Windows kernel. The Linux

kernel is less than six million lines of code,

or 15 percent of the size of the Windows kernel.

RPC Dependence

Windows users cannot disable RPC because Windows

operating systems and services depend upon it,

even when a computer is not connected to a

network. Some of the most serious vulnerabilities

in Windows are due to flaws in how the RPC

protocol is implemented in Windows and not in

the protocol itself.7 The most common way to

5 IIS version 6 was re-architected

and partially re-written for the

Windows Server 2003 release,

making it somewhat more secure

than previous versions of IIS.

6 http://news.com.com/
Gartner+takes+Microsoft+
to+task/2100-7355_3-5582742.
html .

7 http://www.theregister.co.uk/
security/security_report_
windows_vs_linux. Much of

the material around RPC

dependence was taken from

this article written by Nicholas

Petreley. For more information

on this important topic,

we suggest that the reader

download the article.

Microsoft Windows:
An Inherently
Insecure Platform

6

8 http://www.evansdata.com/n2/
pr/releases/Linux04_02.shtml.

9 Burton Group,Windows Server

2003 Security: Making Progress,

But Serious Concerns Remain,

February 24, 2004.

exploit an RPC-related vulnerability is to attack

the service that uses RPC, not the RPC itself.

Perhaps one of the most dangerous worms to

hit the Internet was the Slammer worm in January

2003. It exploited the Microsoft implementation of

RPC by exploiting flaws in Microsoft SQL Server—

multiple instances of SQL Server are able to run

on a single machine. Microsoft implemented this

concept via RPCs. SQL Server is not integrated into

Windows in the manner that IE is, but there is a

good chance that it will be integrated into the new

Windows file system, WinFS, in Windows Longhorn

Server by the 2008—2009 timeframe. This integration

would be a huge mistake. In August 2003, the

Blaster-A worm emerged to take advantage of

the Windows RPC-DCOM (DCOM is another area of

vulnerability of Windows). Interestingly enough,

older versions of Windows that lacked the RPC

function were not affected by the worm.

The Danger of Developer Focus

Microsoft has tried to ensure that Windows is the

most widely used operating system in the world.

This goal has led Microsoft to make Windows

very developer-friendly and easy to use, but at

the expense of tight security. An operating system

such as Linux, however, is evidence that an operating

system can be developer friendly, relatively easy

to use, and very secure. According to Evans Data’s

Summer 2004 Linux Developer Survey8, 92 percent

of survey respondents (500 developers) indicated

that their Linux systems have never been infected

with a virus. The respondents attributed the high

degree of security to the open source development

methodology—“more eyes on the code.”

Microsoft has always focused on developers,

making flexibility and extensibility paramount

goals for its operating systems. Microsoft extended

that philosophy from its client operating systems

to its server operating systems and its application

server architecture. The symmetry of the client and

server development environments has been one of

the most attractive features of the Windows client

and server operating systems because it allows

developers to leverage a common set of tools,

interfaces and skills. These benefits have a downside,

however, in that Microsoft and developers within

Windows sometimes sacrifice security in favor of

symmetry, flexibility, integration and extensibility.

A General Lack of Attention to Security

According to the Burton Group, Windows operating

systems allow, in fact encourage, mixing application

data and executable code.9 Likewise, good auditing

habits and least-privilege programming techniques

are less prevalent in Windows than they are in Linux.

These type-of-use differences, combined with

the weakness of code access control in ActiveX*,

make Windows servers generally more vulnerable

in the application server role than Linux servers.

ActiveX, one of the most vulnerable concepts

available in Windows operating systems, is a

component that allows users to attach computer

programs to Web pages. Users tend to like ActiveX

because it allows Web pages to be much more

dynamic and interactive than they could be

otherwise. But, ActiveX introduces security risks—

ActiveX controls have full access to the Windows

operating system potentially allowing an intruder

Microsoft Windows:
An Inherently
Insecure Platform

7

to take control of a machine. An ActiveX control

containing a virus can be written, distributed and

activated from a Web page, and the viewer of

the control might never know.

Windows, including Windows Server 2003,

has several built-in accounts, at different levels of

security, that users can use by default. Guest and

Administrator are examples of built-in accounts.

Because of these default accounts, there is a

common thread for attack. An attacker knows

the names of the accounts, and hence needs only

the passwords. Many of the default accounts

cannot be deleted, but users can rename them.

Built-in accounts are there for ease of use, but

they increase the ease of attacking Windows.

COMPAR I NG W I NDOWS S E CUR I T Y

W I TH L I NUX S E CUR I T Y

While Linux is increasingly viewed as a potential way

to reduce enterprise IT expenditure, IT managers

and CIO’s should also view Linux as a strong resource

in their overall security implementation. The past

two releases of the Linux kernel (2.4 and 2.6)

have seen such dramatic increases in securability

features that organizations such as the United

States National Security Agency (NSA) have launched

multiple, focused efforts to leverage the higher

security that Linux now affords.

The security of open source software has been

both idealized and made the subject of targeted

disinformation. Generally, two philosophies exist:

that open source is more secure because it is

more rigorously reviewed; and, that proprietary

software is more secure because access to the

source code is limited. While seeming contradictory,

both schools of thought have validity depending

on circumstances.

Open source doxology states that open source

software cannot rely on obscurity for security—

because the code is transparent, security

requirements are much more stringent. Also,

open collaboration is thought to result in the

earlier discovery and correction of security

flaws—an aspect of the thesis that “given enough

eyeballs, all bugs are shallow.”

Even the most ardent open source believers

would say that neither of these two claims actually

guarantees the security of all open source code.

Having enough eyeballs reviewing the code

depends on the open source project having a

strong community, with many sharp individuals

contributing to reviewing the source code.

Linux market share is rapidly growing, and some

claim that the operating system may become

scrutinized more closely for vulnerabilities,

creating the possibility of more exploits; however,

this scrutiny certainly has a benign effect, as well.

Turnaround times for patches in Linux and other

popular open source offerings have traditionally been

very rapid, which allows proactive organizations

to more quickly reap the benefits of a strong

patch management strategy. Linux truly offers

security by transparency—so you always know who

is trying to access your data, and you can keep

the bad guys out.

CONCLU S I ON S

As noted above, the primary reasons that Windows

is an inherently insecure operating system can be

summed up in four points:

Microsoft Windows:
An Inherently
Insecure Platform

8

1. Windows was designed as a single user

operating system.

2. Windows was designed without security as

a primary goal.

3. Microsoft’s competitive strategy led it to

embed more functionality and application

integration into Windows in an attempt to

thwart the competition resulting in a very

large and complex operating system with

many highly dependent pieces of code.

4. Microsoft’s basic lack of attention to security

after the initial Windows implementation.

The impact of these four items is, Microsoft has

made Windows into an operating system that is

basically impossible to make secure. For Windows to

become a secure operating system, Microsoft would

have to re-architect and rewrite the code with an

emphasis on separating application code, such as

Internet Explorer, from the core of Windows. We do

not expect Microsoft to do this, even with Longhorn,

because it would remove the competitive advantages

that it has with close integration of applications

with Windows core code.

Microsoft is attempting to improve Windows

security by adding code in the form of service packs

such as Windows XP SP 2 and Windows Server 2003

SP 1. This approach cannot rectify the basic problem

surrounding Windows security—Windows was

not designed with security as a primary goal.

This “add-on approach” only increases the size

and complexity of Windows, making it even more

difficult to make secure. The early computer

security engineers stressed that the size of the

core of the operating system should be as small as

possible and applications should not be integrated

with the kernel. Microsoft has violated these two

basic rules of secure operating system design,

and it cannot recover without re-architecting

and rewriting the Windows operating system.

Microsoft Windows:
An Inherently
Insecure Platform

9

462-001433-001

© 2005 Novell, Inc. All rights reserved.
Novell, the Novell logo and the N logo
are registered trademarks of Novell, Inc.
in the United States and other countries.

*Microsoft, ActiveX, Windows and
Windows NT are registered trademarks
and Active Directory is a trademark of
Microsoft Corporation. Linux is a
registered trademark of Linus Torvalds.
UNIX is a registered trademark of
X/Open Company Ltd. Netscape is a
registered trademark and Firefox is a
trademark of Netscape Communications
Corporation. All other third-party
trademarks are the property of their
respective owners.

Not intended for distribution or use
outside North and South America.

Novell Product Training
and Support Services

For more information about

Novell’s worldwide product

training, certification programs,

consulting and technical support

services, please visit:

www.novell.com/ngage

For More Information

Contact your local

Novell Solutions Provider,

or visit the Novell ‘ site at:

www.novell.com

You may also call Novell at:

1 888 321 4272 US/Canada

1 801 861 4272 Worldwide

1 801 861 8473 Facsimile

Novell, Inc.
404 Wyman Street

Waltham, MA 02451 USA

www.novell.com

